The correlation of segment accelerations and impact forces with knee angle in jump landing.
نویسندگان
چکیده
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.
منابع مشابه
Effect of Six Weeks of Progressive Jump-Landing Training on Jump Shooting Accuracy and Knee Valgus Angle in Male Basketball Players with Dynamic Knee Valgus
Objective: Dynamic Knee Valgus (DKV) causes many acute and chronic knee injuries during deceleration and landing in sports activities and can affect the athletes’ specific skills. This study aims to investigate the effect of 6 weeks of progressive jump-landing training on jump shooting accuracy and knee valgus angle in male basketball players with DKV. Methods: This is a quasi-experimental stu...
متن کاملRelationship between kinematic parameters of the lower limb and maximum ground reaction force during jumping and one-legged landing
Background: Anterior cruciate ligament injury is one of the most common injuries of the knee joint and prevention of this injury is of great importance(1). Considering that ground reaction forces are one of the load factors on the anterior cruciate ligament, Despite much research in this field to prevent ACL injury, the prevalence of this injury is still high(2). For example, previous studies h...
متن کاملThe Kinematics and Kinetics Analysis of the Lower Extremity in the Landing Phase of a Stop-jump Task
Large number of studies showed that landing with great impact forces may be a risk factor for knee injuries. The purpose of this study was to illustrate the different landing loads to lower extremity of both genders and examine the relationships among selected lower extremity kinematics and kinetics during the landing of a stop-jump task. A total of 35 male and 35 female healthy subjects were r...
متن کاملThe Relationship of Anatomical Alignment and Strength of Some Lower Extremity Muscles with Jump-landing Biomechanics: A Landing Error Scoring System Study
Background: The purpose of the present study was to investigate correlative and predictive relationship of lower extremity anatomical alignment, isometric hip abduction and external rotation strength with jump-landing biomechanics using Landing Error Scoring System (LESS). Methods: Anatomical alignment and isometric lower extremity muscle strength of 30 active...
متن کاملCorrelation between ground reaction force and tibial acceleration in vertical jumping.
Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomechanics
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2007